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INTRODUCTION

A great deal of work has been accomplished in the area of elastic
laminated effective stiffness or microstructure continuum theories and
approximate plate and beam theories. By the same token, 1ittle has
been accomplished with viscoelastic counterparts to these theories.

An elastic continuum theory which included effective stiffnesses
for both the reinforcing and matrix layers of a laminated continuum
was developed by Sun, Achenbach, and Herrmann [1, 21. The continuum

theory was utilized by Thomas [3] to study the simple thickness modes

for laminated media with layering both péra11e1 and perpendicu1ar.to
the plate free surfaces. Sun [4] deduced a two dimensional theory for
laminated plates from the three dimensional continuum theory. Veloc-
ity correction coefficients were introduced into the two dimensional

theory by Thomas [5] and flexural and extensional vibrations for plate

]C. T. SUN, J. D. ACHENBACH and G. HERRMANN (1968) Journal of Applied

Mechanics, 35, 467. Continuum Theory for a Laminated Medium.

2J. D. ACHENBACH, C. T. SUN and G. HERRMANN (1968) Journal cf Applied

Mechanics, 35, 689. On the Vibrations of a Laminated Body.

3 .
C. R. THOMAS (1972) Journal of Sound and Vibration, 23(3), 341-361.
Simple Thickness Modes for Laminated Composite Materials.

4C. T. SUN (1971) Journal of Applied Mechanics, 38, 231-236. Theory
of Laminated Plates.

°C. R. THOMAS (1972) Journal of Sound and Vibration, 25(3), 407-431.

Velocity Corrected Theory of Laminated Plates Applied to Free Plate
Strip Vibrations.
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) strips and rectangular plates were studied by Thomas [6, 7] according
¥ to this theory and comparad to similar results from effective modulus
v plate theories. A microstructure theory for an elastic, laminated

composite beam was developed by Sun [8] and the approach utilized in
this paper will be followed in deriving a viscoelastic, laminated com-
- posite beam theory. Thomas [9] showed that the flexure beam theory in
reference [8] is directly obtainable through a simple reduction of the
0 existing flexure equations for composite plates [4, 5].

i A continuum theory for a viscoelastic laminated composite was

developed by Grot and Achenbach [10], however the equations developed

¢§ 4. 1. SUN (1971) Journal of Applied Mechanics, 38, 231-238. Theory
g of Laminated Plates.

5C. R. THOMAS (1972) Journal of Sound and Vibration, 25(3), 407-431. |

Velocity Corrected Theory of Laminated Plates Applied to Free Plate :l

Strip Vibrations. ' ‘
l

6c. R. THOMAS (1973) Journal of Sound and Vibratijon, 31(2), 195-211.
Extensional Vibrations of Simply Supported Composite Plate Strips.

7¢. R. THOMAS (1975) Journal of the Acoustical Society of America,
57(3), 655-659. Flexural and Extensional Vibrations of Simply Sup-
ported Laminated Rectangular Plates.

8¢, T. SUN (1971) Journal of Applied Mechanics, 38, 947-954. Micro-

structure Theory for a Composite Beam.

9¢. R. THOMAS (1973) Watervliet Arsenal Techrical Report,

- R-WV-T-6-45-73, Flexure Equations of Motion for Laminated Composite
" Beams.
¥
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]OR. A. GROT and J. D. ACHENBACH (1970) Acta Mechanica, 9, 245-263.
Linear Isothermal Theory for a Viscoelastic Laminated Composite.
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were not applied to any problems of wave propagation or vibration. it
is certainly theoretically possible to start with the equations in
reference [10], to make appropriate series exparsions and derive a
plate theory, and to then follow reference [9] to make a direct reduc-
tion to a viscoelastic beam theory. However, for convenience and sim-
plicity of analysis, the approach in the current report will be to be-
gin with the viscoelastic Timoshenko beam equaticns and work towards a
viscoelastic laminated beam equation in the manner of reference [8].
With somewhat guarded conclusions, Stern, Bedford, and Yew [11] have
demonstrated a definite need for an effective stiffness type formula-
tion for viscoelastic laminates.

The current approach to obtaining a viscoelastic laminated beam
theory will be a viscoe]asticAdeve1opment which mirrors the elastic
development given by Sun [8). Surprisingly, the real difficulty is in
obtaining the energies for a single layer modeled as a viscoelastic
Timoshenko beam. The most pleasing and straightforward development

of suitable viscoelastic Timoshenko beams results from a utilization

8¢. T. SUN (1971) Journal of Applied Mechanics, 38, 947-954. Micro-
structure Theory tor a Composite Beam.

9C. R. THOMAS (1973) Watervliet Arsenal Technical Report,
R-WV-T-6-45-73. Flexure Equations of Motion for Laminated Composite
Beams.

]OR. A. GROT and J. D. ACHENBACH (1970) Acta Mechanica, 9, 245-263.
Linear Isothermal Theory for a Viscoelastic Laminated Composite.

HM. STERN, A.BEDFORD, and C. H. YEW (1971) Journal of Applied Mechan-

ics, 38(2), 448-454. Wave Propagation in Viscoelastic Laminates.




of viscoelastic constitutive relations of the differential form; it is
these equations which yield a viscoelastic development which closely
mirrors Sun's [8] elastic derivation.

THE ENERGY PRINCIPLE

As Sun [8] doec in the development of an elastic laminated beam
theory, the first task in deriving a viscoelastic laminated beam theory
is to formulate energies for individual viscoelastic layers in terms of
the Timoshenko |[12] beam theory. In the past, Lee [13] developed vis-
coelastic Timoshenko beam equations for viscoelastic extensionail strain
but the shear strain was left elastic. Pan [14] extended the analysis
to include viscoelastic shear strains. The current objective 1s to
develop the viscoelastic Timoshenko beam equations in a form more suit-
able to the development of a viscoelastic composite beam theory. A first
goal will be the development of a single layer energy principle suitable
for a direct application in the derivation of a multilayer energy prin-
ciple.

The developmer* of an approximate theory such as for laminated

elastic plates has originally been a two step procedure. In the first

8¢. 7. Sun (1971) Journal of Applied Mechanics, 38, 947-954
Microstructure Theory for a Composite Beam,

]28. P. TIMOSHENKO (1922, Philosophical Magazine, Ser. 6, Vol. 43,

125-131. On the Transverse Vibrations of Bars of Uniform Cross-Section.

I?H. C. LEE (1960) Journal of Applied Mechanics, 27, 551-556. Forced

lLateral Vibration of a Uniform Cantilever Beam with Internal and
External Damping.

14H. PAN (1966) Jour. tng. Mech. Div., Proc. Amer. Soc. Civil Eng.,

213-234. Vibration of a Viscoelastic Timoshenko Beam.

2 Zde NI 2,

A AR . AR

Al A




[

instance, the Mindlinplate theory [15] in its first order approximation
was utilized to develop a continuum theory for laminated composites.
Then to obtain a laminated plate theory a first order approximation is
made on those variables in the continuum theory which came from the
zero order part of the Mindlin plate theory and a zero order approxima-
tion is made on the varianles whicl came from the first order part of
the Mindlin theory as in Sun [4] and Thomas [5] - this explanation will
become clear shortly. Now in developing an elastic laminated beam
theory, Sun [8] has made both of these approximations simultaneously
to obtain a flexure theory for laminated beams. Actually, Thomas [9]
has shown that the flexure beam theory is directly obtainable from the
existing flexure plate theory.

The current objective is to immediately derive a viscoelastic
laminated beam theory and to not have to develop a viscoelastic lami-

nated continuum theory first. In making the various zero and first

4C. T. SUN (1971) Journal of Applied Mechanics, 338, 231-238.
Theory of Laminated Plates.

5C. R. THOMAS (1972} Journal of Sound and Vibration, 25(3),

407-431. Velocity Corrected Theory of Laminated Plates Applied
to Free Plate Strip Vibrations.

8C. T. SUN (1971) Journal of Applied Mechanics, 38, 947-954.
Microstructure Theory for a Composite Beam.

Q
“C. R. THOMAS (1973) Watervliet Arsenal Technical Report,

R-WV-T-6-45-73. Flexure Equations of Motion for Laminated Com-
posite Beams.
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R. D. MINDLIN (1955) nal CorQ__En eering Laboratories, Fort
Monmouth, New Jersey Tﬂg 9Tﬁf¥oduct|on to the Mathe-
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3 { order expansions of displacement, terms which lead to an extension .
theory are also maintained since the second expansion of extensional
displacements leads to a flexure term. The first order displa ements

g which will result in the Timoshenko beam equations [12] for flexure
as well as an extensional equation for beams are

] v(yaz,t) = V(y,t) - zo(y,t)

wiy,z,t) = wly,t) - zo(y,t). (1)

the zero order terms in {1) are v and w and a first order expansion of

oL L ST

these two displacements results in the expressions

; | Vyat) = v yat) - 28 ()

‘j | Wly,t) = Wfi(y,t) - v (1) (2)

ﬁ, f where the subscript « = 1, 2 will Tater denote whether a stiff or soft

{ laminated beam layer is indicated and the superscript k which layer

? pair is indicated. While absolutely necessary at this point, the

? notation in (2) jumps into the laminate notation while seeming to be

% at the single layer stage of development. See Sun, Achenbach, and ;
- Herrmann [1] or Sun [8] if clarification is required. §

Combining equations (1) and {2) and extracting only those terms

et T

which result in flexural motion results in the displacement relations

PSR

T

okt el SR

f ; 1C. T. SUN, J. D. ACHENBACH and G. HERRMANN (1968) Journal of Applied
i Mechanics, 35, 467. Continuum Theory for a Laminated Medium.

8¢, 7. SUN (1971) Journal of Applied Mechanics, 38, 947-954. Micro-
structure Theory for a Composite Beam.

2 §
1 S. P. TIMOSHENKO (1922) Philosophical Magazine, Ser 6, Vol 43, 125-131. Pl
On the Transverse Vibrations of Bars of Uniform Cross-Section. ~
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viysz,t) = -z (1,t) - 20(y,t)
w(y,z,t) = w{f(y,t) (3)

where wu(y,t) represents the gross rotation in the laminated beam,
wg(y,t) represents the transverse deflection, and ¢(y,t) represents

the individual layer rotation. The various displacements and rotations
on the right side of (1) refer to the individual layers which will
eventually make up the laminated beam. The various diép]acements and
rotations on the riyght side of (2) represent the reduction from a lam-
inated continuum theory to a laminated beam theory; thus, from conti-
;; nuity of displacement and rotation at laminate interfaces, it is clear
that the notation may be simplified to w(y,t) = wg(y,t) and

piy,.t) = wa(y,t) for a« = 1, 2 and for all values of k. Hence with

these notational simplifications in mind, the final form of the first

order flexure dispiacement expansior is

i

V(y,z,'t) *ZEU)(}’,‘C) - Z(‘bku.’t)
w(y,z,t) = wiy,t) (4)

where these equations are valid only when eventually utilized in

developing a laminated beam theory. CEquations (4) may be reduced to
those for a homogeneous or single layered beam by setting y(y,t) = 0;

this being done, equations (4) reduce to those given by Brunelle [16]

) , for flexure of a beam.

16E. J. BRUNELLE (1970) J. Composite Materials, 4, 404-416. The

Statics and Dynamics of a Transversely Isotropic Timoshenko Beam.




The non-zero strain-displacement relations are

€y T ¥y

T | w0 v
c = e Com F -
yz 2 - 32

The non-zero stress equations of motion which pertain to the problem
are

dyz,y = pW

O,y T Oyz,z =PV . (6)
From the oppendix and equations (A-17) the'constitutive equations for

a special case of the standard linear model are

3 _ . **3 )
(1 +¢C SE)Oyz = (2kG + 2k G §E> €4y
3 * D
14 C = = (E+E —
( at)Oy ( 5t ®y : (7)

where shear correction coeificients k and k* have now been introduced
in a manner similar to that of Timoshenko [12] and Mindlin and
Deresiewicz [17].

The procedure involved in deriving the theory will be t> manipu-
late the left sides of equetions (6) until they are of the form of the
left sides of equations (7). Thus, taking the first time derivatives

of (6) and multiplying by the viscoelastic constant C results in the

125. P. TIMOSHENKO (1922) Philosophical Magazine, Ser 6, Vol 43,

125-131. On the Transverse Vibrations of Bars of unifurm Cross-
Section.

]7R. D. MINDLIN and H. DERESIEWICZ (1953) Columbia University Tech-

nical Report No. 10. Timoshenko's Shear Coefficient fo» Flexural
Vibrations of Beams.
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equatbns

C 5yz,y = o0 W

. + . = ‘e
C Iy.y C Oyz,z oC v (8)
which when added to their counterparts in equation (6) become
Oyz,y ¥ L Oyz,y = oW * ol W
+ C ¢ + + C ¢ = + o0V . 9
Iy C Oy ¥ Oz C 5y2,2 ol + pC v (9)

Multiplying the first equation of (8) by W and the second equation by V,
integrating over the beam volume and time, and finally adding the final

answers results in the equation

e

[ (o '*‘C(.J ’ )w+ (o, .. +C(.)' )V .
f Jfo J'o YZ,Y YZ,Yy Y Yy dA dy dt
* (OYZ,Z *C Uyz,z)v
R I
=] e VvV Rt O dA dy dt
A _ (10)

After several integrations by parts, equation (10) may be

expressed as

')
1 t . . s * .
J f (o +Co W+ (o +Ca)v dA dt
A © yz yz y y

0

Lot N
+ d | (o, +C & vw dA dy dt
J, A H?L yz yz) | Y




Pt

-

e Wy L

St

TR RN WIBIR o ¥ T TH 24,

B : B . av. |
t | (oyz + Coy,) (= + =)
-1 vz YEU Ry 0zt ) ga gy dt
A OO oo+ C o) v
i O T~ %7 5y
=1 Mt “(w FCW) wk (VO )&} dA dy dt (1)
A 0 0
it is immediately clear that
g .t d .
— | (6,, +C &, _)v | dAdydt =0
fA IO jo dz[ Yz yz ‘ (12)
since both beam surfaces are stress free and that
t 5 ) L dA d 1 |
4 WIS - = )
& _& (Oyz C Gyz) W+ (Oy +C oy)v t =0 (13) |
- 0 I
since the boundary terms will. be satisfied at the beam ends. = Applying h
¥

equations (5) and (7) to equation (11) and taking into account equa-

tions (12) and (13) results in . ;k

Lo | (2Kee, 4 2k*G*'éyZ)(2éyz)
IA I\ dA dy dt

RN .
+(Eey + E cy)cy

S L L@ CW v eV Ay de (14)

But, from the chain rule of partial differentiation it is clear that

A T 3 - "L . B i B A - M D U Wi it U 0 +ia i, LN - R T, - . RS s XS - ST T L " a » ! ?

2 . .
sa;.[e ] = ¢ge + g¢ (15)
or that

. 1d 2
EE‘éa-t'(E)
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Similarly, the fact that an indefinite integral can be defined as a

definite integral

[a(t)dt =

with a variable upper limit

Lfg(t)dt + conct,

(17)

immediately results, afte» taking a time derivative of both sides, 1in

the equation

dt

which for g(t) =

(18)

.2
e results in the relationship

d e
LZ = — ft(e)hdt
dt o

(19)

A direct application of relations (16) and (19) to equation (14) with

an introduction of equations (4) and (5) results in the equation

P

; AkG(gg - ¢j - AKS [ éﬂ -$)%d
LA | ot ad (e o | o s
s %%(%%)2 ‘E Ift a¢ 2 e
F—sz - 2ch wldt + Az k)zwz |
+ 4? ﬂf g é% + I& ZACfL k 2 0 dr dy dt =

- 21C Lf&sz

I




after an integration over the beam area where

A = bd
3
bd
= — (
I 3 (21)

with b being the beam width and d being the beam thickness.
Following Anderson [18], a conservation law is sought in the
existence of a quantity H such that
H = constant, (22)
such that obviously
dH

7= 0 (23)

where

H=T+U+V (24)
with the quantities T, U, and V being called the kinetic energy, the
potential energy, and the dissipation energy. From a comparison of
equations (20), (23), ar-. (24) it is clear that the various energies

may be defined as

T= " ayat
gt
U= [ [j U dy dt
ve [t {f v dy dt (25)

186. L. ANDERSON (1975) Journal of Sound and Vibration, 39(1),

55-76. Stability of a Rotating Cantilever Subjected to Dissipative,

Aerodynamic, and Transvarce Follower Forces.

12
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and from equation (20) it is clear that these energies ave

. K.2. .2
™ < Pl + Az OAE + 168
2 o
w1 oW 2 AE, k\2,00,2 . EI, 06,2
U = 2 ke Lg) + e, EL o
w0+ FElEEh? B
Vs T s ae M@ oac Wl dr. (26)
0 o’ ay
- pAC (ZZ)2w2-OIC &2
L _

THE LAMINATED BEAM THEORY

The laminated beam, Figure 1, is composed of a number of alterna-
ting plane, parallel layers of two homogeneous, isotropic viscoelastic
materials which are respectively termed the reinforcing layer and the
matrix layer. The reinforcing layer is the stiffer of the two layer
combination and is indicated by the subscript "1" while the softer
matrix layer is indicated by the subscript "2". The elastic constants,
the viscoelastic constants, the layer density, and the thickness for
the reinforcing and matrix layers respectively are Eys G], ET, G?,

Cy, py» d7 and Epy Gp, Eps Gps Cpy pps d.

The basic variables involved are w, the transverse deflection; Y, the
gross rotation; b1 the rotation of the stiff layer; and ¢,, the rota-
tion of the soft layer. The midplane positions for the kth pair of

neighboring reinforcing and matrix layers are y? and yg respectively

13

7
}
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as indicated in Figure 1, with the layer midpl.nes taken perpendicular
Lo the z-axis. The width of the beam is b and the total or gross thick-
ness is n.

From equation (26), the kinetic, potential, and dissipative ener-

gies in tne individual layers are

Po,.. .2 k2.2 . 2
Tk = S TAGH + Ag(zg) 0T + Ioby ]
* ] W 2
Uy™ = 3 AukaGa(gy ~bg)

¢ Y, By
- ‘ a(})
O CA S LI A SR Y
a oo dy o a o dy
PO * K2, 0002 2
Vo = ﬁ) 1 A“La( a) (53) ool ¥ dry
Ky 202 2
PoPaCa(2g) P 'palacaéa
_ _ (2/)

where a = 1,2 respectively gives the reinforcing and matrix layer
energies.
Now, the threc energies are summed over the n layer pairs to

dr.cermine the total energies for the composite beam




Mt - * *K
R = T + Tr
f”? T T
~ k=n . .
. * . k k
o e L )
. . k=n o, *
s AR
" k=1 (28)
i It {s now convenient to convert the discrete system (28) to a contin- /
Q;g? : uous system by utilization of a smoothing operation, that is to replace
*)E\ | the sunmations in (28) by weighted integrations over the tnickness

variable z.

The result of the smoothing operation 1s the energies

™ h§2 1 (T‘? + T;) dz
-hy2 (dy+dg)
h/2
* 1 * ¥ ‘
U = ] e (UY 4 U2) d2 r
_hjz (dy¥dp) 1772 . |
ok h/2 1 * * |

dz

(V 5) (29)

+

v

EACTAR

where after smoothing
R RE (30) §

sarrying out the integrations in (29) in terns of (27) and taking

|

| i
|

E

|

: 3

into account (30) results in the energies
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217 P22  (dy+do) 24°7171 0 T2T2 (dy+dy) T
1 h .2 h .2
+ = pyly ——— + = poly
2 P171 {dy+dp) T3 P2 (dy+do) b
* ] h oW 2 .1 h ow 2
U™ = 5 AkyGy 23]1823(53 -01)° + 5 AokoG,y (d1+d2)(3y =)

3 2 9y 2
1 % PR T _n_
* g (et Aztz)(d]+d2)(ay) f2 BN @) (&
1 3¢2 2
— ) . —1
«x h w2 x% how @
A1kq G (571553(53 - ¢p) Azszz(d]+d2)(§9 ~47)
] * * h3 B\D h 997 .2
4 4 SN LY U
73 (MEy ¥ AT d,*d, Sy E1I1 dqtd 5y
2" ( 1 17d2)
. A » ,
* C h 2.2 h Wi
V = Y- ¢ .
j; Ezlz(d1+d )( 5 (p,A,C, p,A Co )(d1+d2) Wi dr
(31)
- L (O.AC, + p,ALC,) ik 08 - o 10— g
AR N B A CIET %) I R FURIS
h .2
02A2C2(d1;d2) éz

w

At this point, continuity of displacement at the interface .
the kth pair of layers must be considered. Applying equation (2 to

a multilayer beam results in the equation

o= oK .
v (ysz,t) = -z (y,t) ~z¢,(y,t)



and with the aid of Figure 2 it {s clear that

I d]
d
= Ky - 2
v, zzw 2¢2 (33)
at the interface between layers 1 and 2. It {r also clear from
Figure 2 that
{' = k - 1 +
22 z] 2(d1 d2) . (34)
and that equations (33) describe the same interface such that
(35)

Vy =V, !
From equations (35) applied to equations (33) it is clear that the

continuity condition is

v = e, + (I-no, (36)
where
I R

Following Sun [8], the variable ¢ is eliminated such that

= ¥ (38)

- ¥ng
*2 (1-n)
where for convenience the notation ¢ = ¢] has been introduced.
Expression (38) is directly substituted into equations (31) and

the dimensionless variable

£ = h/(dy + dp) ' (39)

8C. T. SUN (1971) Journal of Applied Mechanics, 38, 947-954.
Microstructure Theory for a Compos1te Beam.
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g { is introduced to yield the energy expressions
" * 1 2 1 2
'}”‘ 4 I [ \L n y 2
F‘.l ' —gp'l -l(b + Epr ) /-i n) - m‘b)
', * w2 Y n 2
' U kG Gy e gAzk Gz( % T [y | (om) ¢
I |
§ - ; a2 1 39,2
i 1.« ¢ 1 oy N 3y2
i + =BTy (o & -
; | 2772 2((1-n 3y (1-n) 8y)
} | _ ‘ . _
i ? w oW Uy ng 2
. {A1k1(’1(3y (b) + EA k2 2<8.V (1-n) ¥ (1--n))
‘ ‘ ek I\ 2 ¢> 2
! ¢ 1[0y + (1n)t 1(l> v 81 ()
{ * _ ot 1 9y N Agy2
2 Vo= fO + fE IZ((]_n) 5} - (]"Y") 53',) g(Q]Al(Z] + D2A2C ) dt
? (40)
; - 1[Gy * (1-0)pnCr J08 = Epq 140y 82
. bLMPI™ P2~2 ARk
o LY
: :
where
3
_ bh
Ib 1. (41)
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Now, all the

out to yield

*

T

squares of the various sums in equations (40) are expanded

the final forms of the energy expressions as

1o o2, 1, 02, 1. s2 .
= - 4+ - + - -
AT R A
s lea (B2 g G T2 A
Lrao? —ta o + bra (A02 4+ Do (2092
+ ~ragh® ~gagh + 5rag(g))” + eay ()
R
373y By
B, 2 N EY: N ET
e,b1(59) -25b3(b;a—)-, + Eby o0 -2gb2q,5; + £hgt
b + eb (A2 4 b, (202 gy 20 2
g 5'3y niay) 285y gy
T S v R
EbgW™ -Ebgif™ -Eby 8" + 2£b]0¢¢

where the constants a. are

i

ay = AqiqGy + AgksGy
a2 = Azszz/(]‘ﬂ)
a. = A k.G, -nA k,G./(1-n)

3 1

171 2272

3y = oAy + pohy

Ip .
ag = 2hney + (1ol + S

L2l2
(1-n)?

i 2 = 0 y(1on
ag = A,/ (1% =,/ (1-1)

g "’"":-';Wr';z'zﬁ.'f"'iw,;h!‘m‘lW' tLoETE e

—_

dv
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dg = —— byl
= n G =
,‘ a8 -(-']—-:']—)-2 A2k2b2 na6
‘ Ib
a9 = -g[np] + (1-n)02] +

=3}
1§

__.D___p]:
ﬁ; ]0 (1_n)2 272

2
- N
ayy = HLye G-m? Eolp
2 ‘ .
612 = A]k]G] + ‘—n——é A2k2G2 ’ : i
(1-n) L
2 |
- n
M3 T eh Yo b (43) ’l1
|
which correspond to the elastic constants given by Sun [8] for elastic h
Taminated beams and where the constants by are |
N * Ak * ok ‘ |
by = AKIGY + A K36 !&

b, = Azk;e;/(1~n)

Bl ek il o bl

_ * K N * .k
by = MGy - oy AokeSs
by = p1MCy * pgholy |
* ' .

br -« *
be = —[nEY + (1-n)E,] +
5ol (1-n)2

b = ApkaGy/ (1-n)% = b,/ (1-n) | 3

8
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b, = —D— A k.G, = nb
o 8 (]_n)z 27272 6
o - by = I—b[np C, + (1-n)p,C,1 + 1 p,1,C
L e 9 £-M1 22 1-n)2 2°272
(1-n
i . b — 5.1.C
: 10 2 727272
s (1-n)
\ )
. * n *
. byy = E4145 + Esl
: 11 11 2°2
(1-n)®
;
brz = AkaB T T Rk
R |
- l )
C g - n .
¥ big = oy =5 ealaly (44)
: (1-0)
“« :
. ! which correspond to the viscoelastic contribution of the current anal-
‘3 ysis of viscoelastic laminated beams. It should be noted that the
K author [19] has evaluated viscoelastic shear correction constants in
;i another paper and based on this evaluation it is clear that k] =
L kp = K} = k5 = w¢/12,
i% Now, from equations (22-25) in conjunction with equations (42) it
Q% : is easy to form energy principle (23), that is dH/dt=0, which upon
f& various integrations by parts and a gathering of common factors of
-;g ' w,0, and ¢ results in equation (23) becoming
l&!’
#
&
W
T 190. R. THOMAS (1976) Watervliet Arsenal Technical Report,

WVT-TR-76009 . Simple Thickness Modes and Shear Correction
Coefficients for Viscoelastic Timoshenko Beams.
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The viscoelastic equations of motion and boundary conditions for
laminated beams are now obtained by applying the first lemma of the
calculus of variations to equation (45). Thus, the thrce equations of

motion are

2 2.
2w 3y 39 w W 39 .
1"? - A5y T gyt b]B;E by5g = Bagy = agW * bW
N [ b
L. ) - 9_¢ _—
2y " "5y T 6 Tl 8 2 52 ©
- b Qfé + bod = aql - ayad + by - b
Ty gh = agh - 3y - byge
2
a.— - a oY + a w + d -$ ~a.. .0 + b - b -—i 1 b w
38y 7,2 12 3 'y
9y ay ay !
+ b Qlé -b..d=-a, P+a p-b U+Db § (46) v
11,2 12 10 13 10 13
oy
and the corresponding boundary conditions are ffi
i.
oW - i; ]
B3y T ¥ - aght b5y = bl = bgh = O, |
or ' i
w=0 on y = 0,2 (47-a) !

W3 o b
+ b= - b,— = 0,

5ay 7ay 5ay 73y 0.
or

Y =0 on y = 0,8
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aa_ly...a §_CP+ba_q.)_b §9?=0,
78y ]]ay 78y 113y

or

¢ =0 on V=0, . (47-¢)

SUMMARY

An energy principle has been formulated for visceelastic Timoshenko
beams according to the stardard linear model with the stipulation, and
hence additional terms, that ihe energy vrinciple be utilized in build-
ing a viscoelas™ic laminated beam theory. The Timoshenko model con-
sidered has accounted for both viscoelastic extensional and visco-
elastic shear strains. [o later incorporate the single layer ensrgy
principle into the development of a lTaminated beam theory, a term which
accounts for the beam's gross rotation was included in the single layer
development.

Using the single layer energies deve]oped.la viscoelastic lam-
inated beam theory composed of a number of alternating, plane, parallel
layers of two homogenious, isotropic viscoelsstic materials, termed
the reinforcing layer and the matrix layer, was derived. In deriving
the theory, the individual layer kinetic, potential, and dissipative
energies were summed over n layer pairs to obtain the total energy of
the composite beam; -these results are converted to a continuou§
system by utilization of & smoothing operation or weighted integration.
The number of independent variables in the toté] composite beam energies
is reduced from four to three thru the introduction of a condition for

continuity at layer interfaces. A direct application of the eneryy

26
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principle developed to the composite beam energies results in a set of
three equations of motion and their corresponding boundary conditions

for viscoelastic, laminated composite beams, A future report will dis-
cuss a number of meaningful results of both wave propagation and vibra-

tion analysis utilizing the equations of meotion developed in this report.
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APPENDIX

The present objective is to derive a set.of constitutive relations
which can be utilized in conjunction with the basic equations for a
Timoshenko beam. While constitutive equations may be formulated in
either integral or differential form, preliminary work in the direction
of formulation of a viscoelastic beam theory for laminated composite
materials indicates that the differential form of constitutive rela-
tions will be most useful. The differential constitutive relations
will be utilized in the present deve]opmeht.

The general form of the differentiaf constitutive equations is

adapted from Fung [20] where the stress-strain relations are of the

form
P1(D)o§j = Q](D)e%j
Po(D)oy, = Qy(D)ey, (A-1)
where Pi(D) and QT(D) are given by
k=n
pr(0) = ] a0k
k=0
k=n k
P2(D) = X ZCkD
k=0

20
Y. C. FUNG (1965) Prentice-Hall, Inc. "Foundations of Solid
Mechanics".
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with D being the time-derivative operator of the form

1 3Tf(t)
D'f = . . (A-3)
ot?

ans where U%j and e;j are the components of the stress and strain

deviatois

]
1 = - -
g, . Uij 3 61j Ukk
, = e,, - 1 §,. e
I 3 g Tk (A-4)

[so]
—_— -
1

in which 043 and ey are the components of stress and strain;

Now, assume 2quations (A-1) to have the form of the standard

Tinear model

2 3
(V+8 =)o= (B+T —)e
ot ot (A-5)

where o 1s stress and e 1s strain. Comparing the form of (A-5) with
equations (A-1) 1t 1s clear that to have the form of the standard

Tinear model 1t must be true that

n‘ = m1 = n2 = m2 = (A-6)

S e . i il

Al e el L .




- s e

T T o AL Ny T 7 v -

and operators (A-2) in light of (A-6) veduce to

P](D) = ay + ;D
Qq(D) = by + byD
PZ(D) = C0 + 01 D
7
Q,(D) = d, +dyD . _ (A-7)

As will be subsequently seen, the only non-zero stresses and
strains for a Timoshenko beam with its y-axis along the length and its

z-axis through the thickness are oy and'oyZ & e, and Eyyt Thus, from

equation (A-4) the non-zero stress and'strain deviators are
g, = 2 U ol =0
y 3y ' yz yz
L. 2 o= (A-8)
Gy * 38 1 Eyy €yz . |
Now, a direct substitution of equations (A-2), (A-7), and (A-8) into '

equation (A-1) results in
[1 + (ay/a,)0loy, = [{by/ag) + (by/ag)bley,
[0+ (ay/ag)lo, = Libgag) + (by/ag)ble,
[V + (Cq/C4)0Joy = [{dg/Cq) + (d1/C5)DTey, . (A-9)

There are thus two equations for stress-strain in the y- coordinate

D"O'.y = Def_‘.y

DBOy = Dq'ey , (A-10)
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where

D~| = 1-(a]/a0)D
(b/a,) * (by/ag)0
D3 =1+ (C]/CO)D

o
f"

D4 = (do/Co) + (d]/CO)D , (A-11)
and they must be combined to form a sivngle constitutive equation
ZD]Dac = (0203 + D]D4)ey . (A-12)

Now, from both the right and left sides of equation (A-12) it is clear

that the constitutive equation is of the forh

(1 a0+ B0)oy = (1+C 0+ @)e, (A-13)

but 1t would now be desireable to have the form of the standard 1ihear
model as in equation (A-5), if possible. This can be achieved if the
restriction is now made that
such that equation (A-12) now becomes

~ 4 =1 . g

1 + (a]/ao)D]oy 2[(bo/a0 + dO/Co) + (b]/a0 + d]/CO)D]ey (A-15)

As a final step, define the constants

C = ay/a,
E = 3(bg/a0 + do/Co)
* 1
E" = 2(by/ag + d3/C,)
26 = by/a,
2G ~b1/a
(A-16)
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with the final form of the constitutive equation thus being

N S T
PR

RV )
A (1 +C sfloy, = (26 + 267 F)ey,

= (E + E*—a—)e

.A..:“ i
k , (1 +C =)o 5T

5t/% (A-17)
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